PHASE-TYPE DISTRIBUTIONS FOR CLAIM SEVERITY REGRESSION MODELING
نویسندگان
چکیده
Abstract This paper addresses the task of modeling severity losses using segmentation when data distribution does not fall into usual regression frameworks. situation is uncommon in lines business such as third-party liability insurance, where heavy-tails and multimodality often hamper a direct statistical analysis. We propose to use models based on phase-type distributions, regressing their underlying inhomogeneous Markov intensity an extension expectation–maximization algorithm. These are interpretable tractable terms multistate processes generalize proportional hazards specification dimension state space larger than 1. show that combination matrix parameters, inhomogeneity transforms, covariate information provides flexible effectively capture entire loss severities.
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
jPhase: an Object-Oriented Tool for Modeling Phase-Type Distributions
IV jPhaseFit: the fitting module 5 IV-A Abstract Classes . . . . . . . . . . . . . . . . . . . . . . . . . 6 IV-B Concrete Classes: Maximum Likelihood Algorithms . . . . . . . 6 IV-B.1 General Phase-Type Distribution EM Algorithm [1] . . 6 IV-B.2 Hyper-Exponential Distribution EM Algorithm [2] . . . 7 IV-B.3 Hyper-Erlang Distribution EM Algorithm [3] . . . . . 7 IV-C Concrete Classes: Moment Ma...
متن کاملModeling Hidden Exposures in Claim Severity via the EMAlgorithm
We consider the issue of modeling the latent or hidden exposure occurring through either incomplete data or an unobserved underlying risk factor. We use the celebrated expectationmaximization (EM) algorithm as a convenient tool in detecting latent (unobserved) risks in finite mixture models of claim severity and in problems where data imputation is needed. We provide examples of applicability o...
متن کاملClassification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions
Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...
متن کاملTraffic Modeling with Phase-Type Distributions and VARMA Processes
In discrete event systems event times are often correlated among events of one event stream and also between different event streams. If this correlation is neglected, then resulting simulation models do not describe the real behavior in a sufficiently accurate way. In most input modeling approaches, no correlation or at most the autocorrelation of one event stream is considered, correlation be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astin Bulletin
سال: 2022
ISSN: ['0515-0361', '1783-1350']
DOI: https://doi.org/10.1017/asb.2021.40